THE GORENSTEINNESS OF THE SYMBOLIC BLOW-UPS FOR CERTAIN SPACE MONOMIAL CURVES

SHIRO GOTO, KOJI NISHIDA, AND YASUHIRO SHIMODA

ABSTRACT. Let $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ denote the prime ideal in the formal power series ring A = k[[X, Y, Z]] over a field k defining the space monomial curve $X = T^{n_1}$, $Y = T^{n_2}$, and $Z = T^{n_3}$ with $GCD(n_1, n_2, n_3) = 1$. Then the symbolic Rees algebras $R_s(\mathbf{p}) = \bigoplus_{n \geq 0} \mathbf{p}^{(n)}$ are Gorenstein rings for the prime ideals $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ with $\min\{n_1, n_2, n_3\} = 4$ and $\mathbf{p} = \mathbf{p}(m, m+1, m+4)$ with $m \neq 9$, 13. The rings $R_s(\mathbf{p})$ for $\mathbf{p} = \mathbf{p}(9, 10, 13)$ and $\mathbf{p} = \mathbf{p}(13, 14, 17)$ are Noetherian but non-Cohen-Macaulay, if $\mathrm{ch} \ k = 3$.

1. Introduction

Let k be a field and let A = k[[X, Y, Z]] and S = k[[T]] be formal power series rings over k. Let $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ denote, for positive integers n_1, n_2 and n_3 with $GCD(n_1, n_2, n_3) = 1$, the kernel of the homomorphism $f: A \to S$ of k-algebras defined by $f(X) = T^{n_1}$, $f(Y) = T^{n_2}$, and $f(Z) = T^{n_3}$. We put $R_s(\mathbf{p}) = \sum_{n \ge 0} \mathbf{p}^{(n)} t^n$ (here t denotes an indeterminate over A) and call it the symbolic Rees algebra of \mathbf{p} .

In the previous paper [1] the authors studied the problem when $R_s(\mathbf{p})$ is a Gorenstein ring and gave a criterion for the case in terms of the elements f and g of \mathbf{p} in Huneke's condition [6] for $R_s(\mathbf{p})$ to be Noetherian. With the criterion the authors proved that $R_s(\mathbf{p})$ are always Gorenstein for the prime ideals $\mathbf{p} = \mathbf{p}(m, m+1, m+3)$ with $m \ge 1$ and $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ with $\min\{n_1, n_2, n_3\} = 3$.

To be the next targets we would like to choose the prime ideals $\mathbf{p} = \mathbf{p}(m, m+1, m+4)$ with $m \ge 1$ and $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ with $\min\{n_1, n_2, n_3\} = 4$, and our conclusion for these ideals can be summarized into the following two theorems.

Theorem (1.1). $R_s(\mathbf{p})$ is a Gorenstein ring for $\mathbf{p} = \mathbf{p}(m, m+1, m+4)$, if $m \neq 9, 13$.

Theorem (1.2).
$$R_s(\mathbf{p})$$
 is a Gorenstein ring for $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$, if $\min\{n_1, n_2, n_3\} = 4$.

In Theorem (1.2) the fact that $R_s(\mathbf{p})$ is Noetherian is due to [6]. Our contribution is its Gorensteinness. For m = 9, 13 in Theorem (1.1) the rings $R_s(\mathbf{p})$ are Noetherian but not Cohen-Macaulay, if $\operatorname{ch} k = 3$ (cf. [7] and (3.4)).

Received by the editors August 15, 1990 and, in revised form, September 10, 1991. 1991 *Mathematics Subject Classification*. Primary 13H10, 13H15; Secondary 13E05. The authors are partially supported by Grant-in-Aid for Cooperative Research.

Theorem (1.1) (resp. Theorem (1.2)) shall be proved in §3 (resp. §4). Section 2 is devoted to some preliminary steps. In his remarkable paper [6] Huneke gave a criterion for $R_s(\mathbf{p})$ to be Noetherian, by which he guaranteed the Noetherian property of $R_s(\mathbf{p})$ for $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ with $\min\{n_1, n_2, n_3\} = 4$. To prove Theorem (1.2) we need his arguments as well as his results (that we will briefly summarize in §4). However the key is the criterion given by the authors [1] for $R_s(\mathbf{p})$ to be a Gorenstein ring, which we will recall in §2 for the sake of completeness.

Throughout this paper let (A, \mathbf{m}) be a regular local ring of $\dim A = 3$ and \mathbf{p} a prime ideal in A with $\dim A/\mathbf{p} = 1$. For each finitely generated A-module M let $l_A(M)$ and $\mu_A(M)$ respectively denote the length of M and the number of elements in a minimal system of generators for M.

2. Preliminaries

First of all let us recall Huneke's criterion.

Proposition (2.1) [6]. If there exist $f \in \mathbf{p}^{(k)}$ and $g \in \mathbf{p}^{(l)}$ with positive integers k, l such that $l_A(A/(f,g,x)A) = kl \cdot l_A(A/\mathbf{p} + xA)$ for some $x \in \mathbf{m} \setminus \mathbf{p}$, then $R_s(\mathbf{p})$ is Noetherian. When the field A/\mathbf{m} is infinite, the converse is also true.

The criterion given by the authors for $R_s(\mathbf{p})$ to be a Gorenstein ring is based on (2.1) and is stated as follows.

Theorem (2.2) [1]. Let f and g be as in (2.1). Then the following two conditions are equivalent.

- (1) $R_s(\mathbf{p})$ is a Gorenstein ring.
- (2) $A/(f, g) + \mathbf{p}^{(n)}$ is a Cohen-Macaulay ring for any $1 \le n \le k + l 2$.

When this is the case, the A-algebra $R_s(\mathbf{p})$ is generated by $\{\mathbf{p}^{(n)}t^n\}_{1\leq n\leq k+l-2}$, ft^k and gt^l , and the rings $A/(f)+\mathbf{p}^{(n)}$, $A/(g)+\mathbf{p}^{(n)}$ and $A/(f,g)+\mathbf{p}^{(n)}$ are Cohen-Macaulay for all $n\geq 1$.

Here let us note the following lemma that we will use to calculate the length of certain modules.

Lemma (2.3) ¹. Let R be a two-dimensional Cohen-Macaulay local ring and let x, y be a system of parameters of R. For given sequences $p_0 = 0 < p_1 \le p_2 \le \cdots \le p_n$ and $q_0 \ge q_1 \ge \cdots \ge q_{n-1} > q_n = 0$ of integers, let

$$I = (x^{p_i} y^{q_i} | 0 \le i \le n) R.$$

Then

$$l_R(R/I) = l_R(R/(x, y)) \cdot \sum_{i=1}^n q_{i-1}(p_i - p_{i-1}).$$

Proof. We may assume that $n \ge 2$ and that our assertion is true for n-1. Then considering the sequences $p_i' = p_i \ (0 \le i \le n-1)$, $q_i' = q_i \ (0 \le i \le n-2)$ and $q_{n-1}' = 0$, we get by the hypothesis on n that

$$l_R(R/I') = l_R(R/(x, y)) \cdot \sum_{i=1}^{n-1} q_{i-1}(p_i - p_{i-1}),$$

¹ The formulation of this lemma is due to the referee. The authors are grateful to the referee for his suggestion.

where $I' = (x^{p'_i}y^{q'_i}|0 \le i \le n-1)R$. Since $I' = I + (x^{p_{n-1}})$ and $I: x^{p_{n-1}} = (x^{p_n-p_{n-1}}, y^{q_{n-1}})$, we have

$$\begin{split} l_R(R/I) &= l_R(R/I') + l_R(I + (x^{p_{n-1}})/I) \\ &= l_R(R/(x, y)) \cdot \sum_{i=1}^{n-1} q_{i-1}(p_i - p_{i-1}) + l_R(R/(x^{p_n - p_{n-1}}, y^{q_{n-1}})) \\ &= l_R(R/(x, y)) \cdot \sum_{i=1}^n q_{i-1}(p_i - p_{i-1}) \end{split}$$

as required.

Now let us assume that our ideal p is generated by the maximal minors of the matrix

$$M = egin{bmatrix} X^{lpha} & Y^{eta'} & Z^{\gamma'} \ Y^{eta} & Z^{\gamma} & X^{lpha'} \end{bmatrix}$$
 ,

where X, Y, Z is a regular system of parameters for A and α , β , γ , α' , β' , γ' are positive integers. Then after suitable permutations of the rows and columns of M, we may assume that the matrix M is one of the following type.

- (I) $\alpha \leq \alpha'$, $\beta \leq \beta'$ and $\gamma \leq \gamma'$,
- (II) $\alpha' < \alpha$, $\beta < \beta'$ and $\gamma < \gamma'$.

As was proved by Herzog and Ulrich [3], \mathbf{p} is self-linked (resp. not self-linked) if and only if M has type (I) (resp. type (II)). And in any case it is already known that $\mu_A(\mathbf{p}^{(2)}/\mathbf{p}^2) = 1$ and $\mathbf{p}^{(n)} \neq \mathbf{p}^n$ for all $n \geq 2$ (cf. [5]). However, later we will need so frequently the assertions for the prime ideals \mathbf{p} whose matrices M have type (I) that we would like to give a brief proof for the case. (See [7] for the case of type (II).)

So assume that $\alpha \leq \alpha'$, $\beta \leq \beta'$ and $\gamma \leq \gamma'$. Let $a = Z^{\gamma + \gamma'} - X^{\alpha'}Y^{\beta'}$, $b = X^{\alpha + \alpha'} - Y^{\beta}Z^{\gamma'}$ and $c = Y^{\beta + \beta'} - X^{\alpha}Z^{\gamma}$. Hence $\mathbf{p} = (a, b, c)$ and any pair of a, b and c forms a regular system of parameters for $A_{\mathbf{p}}$. We begin with the following

Lemma (2.4). $\alpha < \alpha'$, $\beta < \beta'$ or $\gamma < \gamma'$.

Proof. Suppose that $\alpha = \alpha'$, $\beta = \beta'$ and $\gamma = \gamma'$. Then since $a - b = (X^{\alpha} + Y^{\beta} + Z^{\gamma})(Z^{\gamma} - X^{\alpha})$, we have $X^{\alpha} + Y^{\beta} + Z^{\gamma} \in \mathbf{p}$ or $Z^{\gamma} - X^{\alpha} \in \mathbf{p}$, while $\mathbf{p} \subseteq (X^{\alpha}, Y^{\beta}, Z^{\gamma})^2$. Hence $Z^{\gamma} \in (X^{\alpha}, Y^{\beta}, Z^{2\gamma})$, which is absurd.

Proposition (2.5). There exists $d_2 \in \mathbf{p}^{(2)}$ such that

$$X^{\alpha} d_2 = acZ^{\gamma'-\gamma} - b^2Y^{\beta'-\beta},$$

$$Y^{\beta} d_2 = ab - c^2X^{\alpha'-\alpha}Z^{\gamma'-\gamma} \quad and \quad Z^{\gamma} d_2 = -a^2 + bcX^{\alpha'-\alpha}Y^{\beta'-\beta}.$$

If $\alpha < \alpha'$, then $d_2 \equiv -Z^{\gamma+2\gamma'} \operatorname{mod}(X)$.

Proof. Because $X^{\alpha}a + Y^{\beta'}b + Z^{\gamma'}c = Y^{\beta}a + Z^{\gamma}b + X^{\alpha'}c = 0$, we see

$$(X^{\alpha}a + Y^{\beta'}b) \cdot b = -Z^{\gamma'}bc = (Y^{\beta}a + X^{\alpha'}c) \cdot cZ^{\gamma'-\gamma}$$

so that $X^{\alpha}(ab-c^2X^{\alpha'-\alpha}Z^{\gamma'-\gamma})=Y^{\beta}(acZ^{\gamma'-\gamma}-b^2Y^{\beta'-\beta})$, whence $X^{\alpha}d_2=acZ^{\gamma'-\gamma}-b^2Y^{\beta'-\beta}$ and $Y^{\beta}d_2=ab-c^2X^{\alpha'-\alpha}Z^{\gamma'-\gamma}$ for some $d_2\in \mathbf{p}^{(2)}$. Notice

that

$$(Z^{\gamma} d_2)b = (Z^{\gamma}b) d_2 = (-Y^{\beta}a - X^{\alpha'}c) d_2$$

= $(Y^{\beta} d_2)(-a) + (X^{\alpha} d_2)(-cX^{\alpha'-\alpha})$
= $(-a^2 + bcX^{\alpha'-\alpha}Y^{\beta'-\beta})b$

and we get $Z^{\gamma} d_2 = -a^2 + bcX^{\alpha'-\alpha}Y^{\beta'-\beta}$, too. If $\alpha < \alpha'$, we have $Y^{\beta} d_2 \equiv ab \equiv -Y^{\beta}Z^{\gamma+2\gamma'} \operatorname{mod}(X)$ so that $d_2 \equiv -Z^{\gamma+2\gamma'} \operatorname{mod}(X)$.

Corollary (2.6) [5]. (1) $\mathbf{p}^{(2)} = (d_2) + \mathbf{p}^2$.

- (2) $\mu_A(\mathbf{p}^{(2)}) \leq 5$.
- (3) $\mathbf{p}^{(n)} \neq \mathbf{p}^n$ if $n \geq 2$.

Proof. By (2.4) we may assume that $\alpha < \alpha'$. Then as $d_2 \equiv -Z^{\gamma+2\gamma'} \mod(X)$ by (2.5) and as $(X) + \mathbf{p} = (X) + (Z^{\gamma+\gamma'}, Y^{\beta}Z^{\gamma'}, Y^{\beta+\beta'})$, we have

$$(\#) \ (X, d_2) + \mathbf{p}^2 = (X) + (Z^{\gamma + 2\gamma'}, Y^{2\beta}Z^{2\gamma'}, Y^{\beta + \beta'}Z^{\gamma + \gamma'}, Y^{2\beta + \beta'}Z^{\gamma'}, Y^{2(\beta + \beta')})$$

whence $l_A(A/(X, d_2) + \mathbf{p}^2) = 3(\beta \gamma + \beta \gamma' + \beta' \gamma')$ by (2.3). Let $e_{XA}(A/\mathbf{p}^{(2)})$ denote the multiplicity of $A/\mathbf{p}^{(2)}$ relative to the parameter X. Then

$$l_A(A/(X) + \mathbf{p}^{(2)}) = e_{XA}(A/\mathbf{p}^{(2)})$$

since $A/\mathbf{p}^{(2)}$ is a Cohen-Macaulay ring, while we get by the associative formula [8, p. 126] of multiplicity that

$$e_{XA}(A/\mathbf{p}^{(2)}) = l_{A_{\mathbf{p}}}(A_{\mathbf{p}}/\mathbf{p}^{2}A_{\mathbf{p}}) \cdot e_{XA}(A/\mathbf{p}) = 3 \cdot l_{A}(A/(X) + \mathbf{p})$$

$$= 3 \cdot l_{A}(A/(X) + (Z^{\gamma+\gamma'}, Y^{\beta}Z^{\gamma'}, Y^{\beta+\beta'}))$$

$$= 3(\beta\gamma + \beta\gamma' + \beta'\gamma')$$

(cf. (2.3)). Hence $l_A(A/(X\,,\,d_2)+\mathbf{p}^2)=l_A(A/(X)+\mathbf{p}^{(2)})$, which yields $(X)+\mathbf{p}^{(2)}=(X\,,\,d_2)+\mathbf{p}^2$ so that $\mathbf{p}^{(2)}=(d_2)+\mathbf{p}^2+X\mathbf{p}^{(2)}$. Thus Nakayama's lemma proves the assertion (1). Notice that $\mu_A(\mathbf{p}^{(2)})=\mu_A((X)+\mathbf{p}^{(2)}/(X))\leq 5$ by the above equality (#) and we have the assertion (2). As $(X)+\mathbf{p}^2\subseteq (X\,,\,Y\,,\,Z^{2(\gamma+\gamma')})$ and as $d_2\equiv -Z^{\gamma+2\gamma'}\bmod (X)$, we have $d_2\notin (X)+\mathbf{p}^2$ so that $d_2\notin \mathbf{p}^2$; hence $\mathbf{p}^{(2)}\neq\mathbf{p}^2$. Let $n\geq 3$ be an integer and assume that $\mathbf{p}^{(n)}=\mathbf{p}^n$. Hence $d_2t\cdot (at)^{n-2}\in \mathbf{p}^nt^{n-1}$. We put $R=\sum_{i\geq 0}\mathbf{p}^it^i$ and $G=R/\mathbf{p}R\ (=\bigoplus_{i\geq 0}\mathbf{p}^i/\mathbf{p}^{i+1})$. Then because at is G-regular (cf., e.g., [4, 2.1]), we have $d_2t\in \mathbf{p}R$, that is $d_2\in \mathbf{p}^2$ which cannot happen as we have checked above. Thus $\mathbf{p}^{(n)}\neq \mathbf{p}^n$ for all $n\geq 2$.

3. Proof of Theorem (1.1)

We begin with the following

Theorem (3.1). Suppose that **p** is generated by the maximal minors of the matrix

$$\begin{bmatrix} X & Y^3 & Z^{n+1} \\ Y & Z^3 & X^n \end{bmatrix},$$

where X, Y, Z is a regular system of parameters for A and n is a positive integer. Then $R_s(\mathbf{p})$ is a Gorenstein ring.

Proof. If n=1, then after renaming X, Y and Z, we may assume that **p** is generated by the maximal minors of the matrix

$$M = \begin{bmatrix} X & Y & Z^3 \\ Y & Z^2 & X^3 \end{bmatrix}.$$

Let us maintain the same notation as in $\S 2$. Then the matrix M is of type (I) and so we have by (2.5) that $d_2 \equiv -Z^8 \mod(X)$. Hence $(c, d_2, X) = (X, Y^2, Z^8)$ and

$$l_A(A/(c, d_2, X)) = 16 = 1 \cdot 2 \cdot l_A(A/(X) + \mathbf{p}),$$

because $l_A(A/(X) + \mathbf{p}) = l_A(A/(X) + (Z^5, YZ^3, Y^2)) = 8$ (cf. (2.3)). Thus $R_s(\mathbf{p})$ is a Gorenstein ring by (2.2).

Suppose that $n \ge 2$ and recall that $Xd_2 = acZ^{n-2} - b^2Y^2$ and $Yd_2 =$ $ab - c^2X^{n-1}Z^{n-2}$ (cf. (2.5)). Then as

$$(Xd_2 + b^2Y^2)b = Z^{n-2}abc = (Yd_2 + c^2X^{n-1}Z^{n-2})cZ^{n-2}$$

we have $X(bd_2 - c^3X^{n-2}Z^{2n-4}) = Y(cd_2Z^{n-2} - b^3Y)$ so that

(1) $Xd_3 = cd_2Z^{n-2} - b^3Y$ and (2) $Yd_3 = bd_2 - c^3X^{n-2}Z^{2n-4}$,

for some $d_3 \in \mathbf{p}^{(3)}$. When n = 2, we have $d_2 \equiv -Z^9 \mod(X)$ (cf. (2.5)). Hence as $Yd_3 \equiv (Z^{12} - Y^{11})Y \mod(X)$ by the equation (2), we get $d_3 \equiv$ $Z^{12} - Y^{11} \mod(X)$. Therefore $(b, d_3, X) = (X, YZ^3, Z^{12} - Y^{11})$ so that

$$l_A(A/(b, d_3, X)) = l_A(A/(X, Y, Z^{12} - Y^{11})) + l_A(A/(X, Z^3, Z^{12} - Y^{11}))$$

= 45 = 1 \cdot 3 \cdot l_A(A/(X) + \mathbf{p}),

since $l_A(A/(X)+\mathbf{p}) = l_A(A/(X)+(Z^6, YZ^3, Y^4)) = 15$. Thus $R_s(\mathbf{p})$ is Noetherian by (2.1). Because $\mathbf{p}^{(2)} = (d_2) + \mathbf{p}^2$ (cf. (2.6)(1)), we have $(X, b) + \mathbf{p}^{(2)} =$ (X, Z^9, YZ^3, Y^8) whence

$$l_A(A/(X, b) + \mathbf{p}^{(2)}) = 30 = e_{XA}(A/(b) + \mathbf{p}^{(2)}),$$

that is $A/(b) + \mathbf{p}^{(2)}$ is Cohen-Macaulay and so $R_s(\mathbf{p})$ is a Gorenstein ring by (2.2).

Now assume that $n \geq 3$. Then since

$$(Xd_3 + b^3Y) = bcd_2Z^{n-2} = (Yd_3 + c^3X^{n-2}Z^{2n-4})cZ^{n-2}$$

by the equations (1) and (2), we have $X(bd_3-c^4X^{n-3}Z^{3n-6})=Y(cd_3Z^{n-2}-b^4)$ so that

(3) $Yd_4 = bd_3 - c^4 X^{n-3} Z^{3n-6}$

for some $d_4 \in \mathbf{p}^{(4)}$. Notice that $d_3 \equiv Z^{3n+6} \mod(X)$ by the equation (2) and we get $d_4 \equiv -Z^{4n+7} - X^{n-3}Y^{15}Z^{3n-6} \mod(X)$ by the equation (3). Hence $(c, d_4, X) = (X, Y^4, Z^{4n+7})$ so that

$$l_A(A/(c, d_4, X)) = 4 \cdot (4n + 7) = 1 \cdot 4 \cdot l_A(A/(X) + \mathbf{p}).$$

Thus $R_s(\mathbf{p})$ is Noetherian by (2.1). To check that $R_s(\mathbf{p})$ is Gorenstein, it is enough by (2.2) to see that $A/(c) + \mathbf{p}^{(2)}$ and $A/(c) + \mathbf{p}^{(3)}$ are Cohen-Macaulay. As $(X, c) + \mathbf{p}^{(2)} = (X) + (Z^{2n+5}, Y^2Z^{2n+2}, Y^4)$ (cf. (2.6)(1)), we have

$$l_A(A/(X,c) + \mathbf{p}^{(2)}) = 2 \cdot (4n+7) = e_{XA}(A/(c) + \mathbf{p}^{(2)})$$

whence $A/(c) + \mathbf{p}^{(2)}$ is Cohen-Macaulay. Because $d_3 \equiv Z^{3n+6} \mod(X)$, we have

$$(X, d_3) + \mathbf{pp}^{(2)} = (X) + (Z^{3n+6}, Y^3 Z^{3n+3}, Y^4 Z^{2n+5}, Y^6 Z^{2n+2}, Y^8 Z^{n+4}, Y^9 Z^{n+1}, Y^{12})$$

by (2.6)(1). Therefore

$$l_A(A/(X, d_3) + \mathbf{pp}^{(2)}) = 6 \cdot (4n + 7) = l_A(A/(X) + \mathbf{p}^{(3)})$$

so that $(X) + \mathbf{p}^{(3)} = (X, d_3) + \mathbf{p}\mathbf{p}^{(2)}$. Hence

$$(X, c) + \mathbf{p}^{(3)} = (X) + (Z^{3n+6}, Y^3Z^{3n+3}, Y^4)$$

and so we get

$$l_A(A/(X,c)+\mathbf{p}^{(3)})=3\cdot(4n+7)=e_{XA}(A/(c)+\mathbf{p}^{(3)}).$$

Thus $A/(c) + \mathbf{p}^{(3)}$ is Cohen-Macaulay.

To prove Theorem (1.1) we need one more result.

Proposition (3.2). Suppose that **p** is generated by the maximal minors of the matrix

$$\begin{bmatrix} X^2 & Y^2 & Z^3 \\ Y & Z^2 & X^2 \end{bmatrix}$$

where X, Y, Z is a regular system of parameters for A. Then $R_s(\mathbf{p})$ is a Gorenstein ring.

Proof. The matrix has type (I) and so by (2.5), $Yd_2 = ab - c^2Z$ and $Z^2d_2 = -a^2 + bcY$. Therefore as

$$(Yd_2 + c^2Z)a = a^2b = (bcY - Z^2d_2)b$$
,

we get $Y(ad_2 - b^2c) = Z(-ac^2 - bd_2Z)$ so that $Yd_3 = -ac^2 - bd_2Z$ and $Zd_3 = ad_2 - b^2c$ for some $d_3 \in \mathbf{p}^{(3)}$. Notice that

$$d_2 \equiv -Z^8 \mod(Y),$$
 $d_2 \equiv -X^6 Y \mod(Z),$ $d_3 \equiv -Z^{12} + X^{10} Z \mod(Y)$ and $d_3 \equiv X^2 Y^7 \mod(Z).$

Then we have $c^2d_2+bd_3\equiv 0 \mod(Z)$, whence $Zd_4=c^2d_2+bd_3$ for some $d_4\in \mathbf{p}^{(4)}$. Because $d_4\equiv X^{14}-2X^4Z^{11}\mod(Y)$, we see

$$l_A(A/(d_2\,,\,d_4\,,\,Y)) = l_A(A/(X^{14}\,,\,Y\,,\,Z^8)) = 112 = 2\cdot 4\cdot l_A(A/(Y) + \mathbf{p}).$$

Thus $R_s(\mathbf{p})$ is Noetherian by (2.1). To check that $R_s(\mathbf{p})$ is Gorenstein, let $I = (d_2, d_3) + \mathbf{p}^3 \subseteq (d_2) + \mathbf{p}^{(3)}$. Then

$$(Y) + I = (Y) + (Z^8, X^6Z^6, X^8Z^4, X^{10}Z, X^{12})$$

so that $l_A(A/(Y) + I) = 70$ by (2.3), while

$$e_{YA}(A/(d_2) + \mathbf{p}^{(3)}) = l_{A_{\mathbf{p}}}(A_{\mathbf{p}}/d_2A_{\mathbf{p}} + \mathbf{p}^3A_{\mathbf{p}}) \cdot e_{YA}(A/\mathbf{p})$$

= 5 \cdot 14 = 70

by the associative formula of multiplicity (cf. [1, (3.1)(3)], too). Hence by the inequalities

$$l_A(A/(Y)+I) \ge l_A(A/(Y, d_2)+\mathbf{p}^{(3)}) \ge e_{YA}(A/(d_2)+\mathbf{p}^{(3)}),$$

we get that $A/(d_2) + \mathbf{p}^{(3)}$ is Cohen-Macaulay. Let $J = (d_2, d_4) + d_3\mathbf{p} + \mathbf{p}^4$ ($\subseteq (d_2) + \mathbf{p}^{(4)}$). Then

$$(Y) + J = (Y) + (Z^8, X^{10}Z^6, X^{12}Z^3, X^{14})$$

so that $l_A(A/(Y) + J) = 98 = e_{YA}(A/(d_2) + \mathbf{p}^{(4)})$, whence by the inequalities

$$l_A(A/(Y) + J) \ge l_A(A/(Y, d_2) + \mathbf{p}^{(4)}) \ge e_{YA}(A/(d_2) + \mathbf{p}^{(4)}),$$

we find that $A/(d_2) + \mathbf{p}^{(4)}$ is Cohen-Macaulay. Thus $R_s(\mathbf{p})$ is a Gorenstein ring by (2.2).

Remark (3.3). The prime ideal $\mathbf{p} = \mathbf{p}(11, 14, 10)$ corresponds to the ideal considered in (3.2).

Proof of Theorem (1.1). We write m = 4n + r with $0 \le r < 4$. If r = 0, then $\mathbf{p} = (X^{n+1} - Z^n, Y^4 - X^3 Z)$ which is a complete intersection in A = k[[X, Y, Z]]. Hence $\mathbf{p}^{(n)} = \mathbf{p}^n$ for any $n \ge 1$ and we have an isomorphism $R_s(\mathbf{p}) \cong A[T_1, T_2]/(f)$ of A-algebras, where $A[T_1, T_2]$ is a polynomial ring and $0 \ne f \in A[T_1, T_2]$. Thus $R_s(\mathbf{p})$ is certainly Gorenstein.

(1) (r=1). If n=0, then $Y-X^2 \in \mathbf{p}$ and \mathbf{p} is a complete intersection in A. If n=1, then $\mathbf{p}=(Y^3-Z^2, X^3-YZ)$, which is a complete intersection in A. Thus we may assume $n \ge 2$. Then \mathbf{p} is generated by the maximal minors of the matrix

$$\begin{bmatrix} X^3 & Y^3 & Z^n \\ Y & Z^2 & X^{n-1} \end{bmatrix}$$

(cf. [2]), whence the assertion follows from [1, (4.1)] if $n \ge 4$. The cases n = 2, 3 are the exceptional ones, that is m = 9, 13.

(2) (r=2). We may assume $n \ge 1$, because $Z - Y^2 \in \mathbf{p}$ if n=0. Hence \mathbf{p} is generated by the maximal minors of the matrix

$$\begin{bmatrix} X^3 & Y^2 & Z^n \\ Y^2 & Z & X^n \end{bmatrix}$$

so that the assertion follows from [1, (4.1)] if $n \ge 3$. When n = 1, notice that **p** is generated by the maximal minors of the matrix

$$\begin{bmatrix} Y^2 & Z & X^3 \\ Z & X & Y^2 \end{bmatrix}$$

and we have $R_s(\mathbf{p})$ to be a Gorenstein ring again by [1, (4.1)]. If n=2, \mathbf{p} is generated by the maximal minors of the matrix

$$\begin{bmatrix} Y^2 & Z^2 & X^3 \\ Z & X^2 & Y^2 \end{bmatrix}$$

so that $R_s(\mathbf{p})$ is Gorenstein by (3.2).

(3) (r = 3). We may assume $n \ge 1$, as $Z - XY \in \mathbf{p}$ if n = 0. Hence \mathbf{p} is generated by the maximal minors of the matrix

$$\begin{bmatrix} Z & Y^3 & X^{n+1} \\ Y & X^3 & Z^n \end{bmatrix}$$

so that the assertion follows from (3.1). This completes the proof of Theorem (1.1).

The symbolic Rees algebras $R_s(\mathbf{p})$ for $\mathbf{p} = \mathbf{p}(9, 10, 13)$ is Noetherian but not Cohen-Macaulay, if $\operatorname{ch} k = 3$ (cf. [7]). The same is true for $\mathbf{p} = \mathbf{p}(13, 14, 17)$ too, if $\operatorname{ch} k = 3$. We shall prove it in the following

Example (3.4). Let $\mathbf{p} = \mathbf{p}(13, 14, 17)$ and let \mathbf{M} denote the unique graded maximal ideal of $R_s(\mathbf{p})$. Then $R_s(\mathbf{p})$ is a Noetherian ring with dim $R_s(\mathbf{p})_{\mathbf{M}} = 4$ and depth $R_s(\mathbf{p})_{\mathbf{M}} = 3$, if ch k = 3.

Proof. The ideal **p** is generated by the maximal minors of the matrix

$$M = \begin{bmatrix} X^3 & Y^3 & Z^3 \\ Y & Z & X^2 \end{bmatrix}$$

of type (II). Let $a = Z^4 - X^2Y^3$, $b = X^5 - YZ^3$ and $c = Y^4 - X^3Z$ (hence $\mathbf{p} = (a, b, c)$). Then as $X^3a + Y^3b + Z^3c = Ya + Zb + X^2c = 0$, we have $Y^3a^3 + Z^3b^3 + X^6c^3 = 0$. Therefore because

$$(Z^3b^3 + X^6c^3)b = -Y^3a^3b = (X^3a + Z^3c)a^3$$

we see $X^3(a^4-bc^3X^3)=Z^3(b^4-a^3c)$ so that $Z^3d_4=a^4-bc^3X^3$ for some $d_4\in \mathbf{p}^{(4)}$. Notice that $c\equiv Y^4$ and $d_1\equiv Z^{13} \mod(X)$ and we find

$$l_A(A/(c, d_4, X)) = 52 = 1 \cdot 4 \cdot l_A(A/(X) + \mathbf{p}),$$

whence $R_s(\mathbf{p})$ is Noetherian by (2.1) but non-Cohen-Macaulay by (2.2) and [7, (2.4)]. Because depth $R_s(\mathbf{p})_{\mathbf{M}} \geq 3$ by [1, (2.1) and (3.7)(3)] and dim $R_s(\mathbf{p})_{\mathbf{M}} = 4$, we get depth $R_s(\mathbf{p})_{\mathbf{M}} = 3$ as required.

4. Proof of Theorem (1.2)

Let $\mathbf{p} = \mathbf{p}(n_1, n_2, n_3)$ with $n_1 = 4$ and assume that \mathbf{p} is not a complete intersection in A = A[[X, Y, Z]]. Hence by [2] the ideal \mathbf{p} is generated by maximal minors of a matrix of the following form

$$\begin{bmatrix} X^{\alpha} & Y^{\beta'} & Z^{\gamma'} \\ Y^{\beta} & Z^{\gamma} & X^{\alpha'} \end{bmatrix}$$

with positive integers α , β , γ , α' , β' and γ' . Then as $(X) + \mathbf{p} = (X) + (Z^{\gamma+\gamma'}, Y^{\beta}Z^{\gamma'}, Y^{\beta+\beta'})$, we have $l_A(A/(X) + \mathbf{p}) = \beta\gamma + \beta\gamma' + \beta'\gamma'$ (cf. (2.3)), while $e_{XA}(A/\mathbf{p}) = 4$ (= n_1). Hence $\beta = \gamma' = 1$ and $\gamma + \beta' = 3$, as $\beta\gamma + \beta\gamma' + \beta'\gamma' = 4$. We may assume $\gamma = 1$ and $\beta' = 2$ so that solving the equations

$$4(\alpha + \alpha') = n_2 + n_3$$
, $3n_2 = 4\alpha + n_3$, $2n_3 = 4\alpha' + 2n_2$,

we get $n_2 = 2\alpha + \alpha'$ and $n_3 = 2\alpha + 3\alpha'$; hence α' is odd, as GCD(4, n_2 , n_3) = 1. Thus Theorem (1.2) follows from the next more general

Theorem (4.1). Let p be a prime ideal in a 3-dimensional regular local ring A and assume that p is generated by the maximal minors of a matrix of the form

$$\begin{bmatrix} X^q & Y^2 & Z \\ Y & Z & X^p \end{bmatrix}$$

where X, Y, Z is a regular system of parameters for A and p, q are positive integers with p odd. Then $R_s(\mathbf{p})$ is a Gorenstein ring.

We divide the proof of Theorem (4.1) into a few parts. First we put $a = Z^2 - X^p Y^2$, $b = X^{p+q} - YZ$ and $c = Y^3 - X^q Z$. Hence $\mathbf{p} = (a, b, c)$ and any pair of a, b and c forms a regular system of parameters for $A_{\mathbf{p}}$. Choose $0 \le k \in Z$ so that $kp < q \le (k+1)p$. Then we get by [6, Proof of 3.14] the following

Lemma 4.2. There exist elements $e_n \in \mathbf{p}^{(n)}$ $(1 \le n \le k+2)$ and $f \in \mathbf{p}^{(2k+3)}$ such that

$$\begin{split} e_n &\equiv Y^{2n+1} \bmod (X) & (1 \leq n \leq k+1) \,, \\ e_{k+2} &\equiv (-1)^k Z^{2k+3} \bmod (X) & \text{if } q < (k+1)p \,, \\ &\equiv Y^{2k+5} + (-1)^k Z^{2k+3} \bmod (X) & \text{if } q = (k+1)p \,, \\ f &\equiv -Z^{4k+4} \bmod (X) & \text{if } q - kp < (k+1)p - q \,, \\ &\equiv Y^{4k+8} \bmod (X) & \text{if } q - kp > (k+1)p - q > 0. \end{split}$$

The Noetherian property of $R_s(\mathbf{p})$ now directly follows from (2.1) and (4.2), because

$$(4.3) l_A(A/(b, e_{k+2}, X)) = l_A(A/(X, YZ, Y^{2k+5} + (-1)^k Z^{2k+3}))$$
$$= 1 \cdot (k+2) \cdot 4 \quad \text{if } a = (k+1)p,$$

$$(4.4) l_A(A/(e_{k+1}, f, X)) = l_A(A/(X, Y^{2k+3}, Z^{4k+4}))$$

$$= (k+1) \cdot (2k+3) \cdot 4 if q - kp < (k+1)p - q$$

and

 $(4.5) l_A(A/(e_{k+2}, f, X)) = l_A(A/(X, Y^{4k+8}, Z^{2k+3}))$

$$= (k+2) \cdot (2k+3) \cdot 4 \quad \text{if } q - kp > (k+1)p - q > 0$$

(notice that $q - kp \neq (k+1)p - q$, as p is odd).

To see that $R_s(\mathbf{p})$ is a Gorenstein ring we need further informations about the ideals $\mathbf{p}^{(n)}$. We begin with the following

Proposition (4.6). $\mathbf{p}^{(n)} = \mathbf{p}^n + \sum_{j=1}^n e_j \mathbf{p}^{n-j} \text{ for } 1 \le n \le k+1$.

Proof. Let $I = \mathbf{p}^n + \sum_{j=1}^n e_j \mathbf{p}^{n-j}$ and

$$J = (X) + (Z^{2n}, YZ^{2n-1}, \dots, Y^{n-1}Z^{n+1}, Y^nZ^n)$$

+ $(Y^{n+2}Z^{n-1}, Y^{n+3}Z^{n-2}, \dots, Y^{2n}Z, Y^{2n+1}).$

Then $(X) + I \supseteq J$, because

$$\begin{split} a^{n-j}b^j &\equiv Y^j Z^{2n-j} \ \text{mod}(X) \quad \text{for } 0 \leq j \leq n \,, \\ b^{n-1-j}e_{j+1} &\equiv Y^{n+2+j} Z^{n-1-j} \ \text{mod}(X) \quad \text{for } 0 \leq j \leq n-1. \end{split}$$

As $l_A(A/J) = 4\binom{n+1}{2} = e_{XA}(A/\mathbf{p}^{(n)})$ (cf. (2.3)), by the canonical inequalities

$$l_A(A/J) \ge l_A(A/(X) + I) \ge l_A(A/(X) + \mathbf{p}^{(n)}) \ge e_{XA}(A/\mathbf{p}^{(n)})$$

we get $J=(X)+I=(X)+{\bf p}^{(n)}$. Hence ${\bf p}^{(n)}=I+X{\bf p}^{(n)}$ so that ${\bf p}^{(n)}=I$ by Nakayama's lemma.

Corollary (4.7). $R_s(\mathbf{p})$ is a Gorenstein ring, if q = (k+1)p.

Proof. By (4.6) and its proof we see $(X, b) + \mathbf{p}^{(n)} = (X) + (Z^{2n}, YZ, Y^{2n+1})$ so that

$$l_A(A/(X, b) + \mathbf{p}^{(n)}) = 4n = e_{XA}(A/(b) + \mathbf{p}^{(n)})$$

for $1 \le n \le k+1$. Hence $A/(b) + \mathbf{p}^{(n)}$ is a Cohen-Macaulay ring, which proves by (2.2) and (4.3) the assertion.

Proposition (4.8). Suppose q < (k+1)p. Then $\mathbf{p}^{(n)} = \mathbf{p}^n + \sum_{j=1}^{k+2} e_j \mathbf{p}^{(n-j)}$ for $k+2 \le n \le 2k+2$.

Proof. Let $I = \mathbf{p}^{n} + \sum_{j=1}^{k+2} e_{j} \mathbf{p}^{(n-j)}$ and

$$J = (X) + (Z^{2n-1}, YZ^{2n-2}, \dots, Y^{n-k-2}Z^{n+k+1})$$

$$+ (Y^{n-k}Z^{n+k}, Y^{n-k+1}Z^{n+k-1}, \dots, Y^{n}Z^{n})$$

$$+ (Y^{n+2}Z^{n-1}, Y^{n+3}Z^{n-2}, \dots, Y^{n+k+2}Z^{n-k-1})$$

$$+ (Y^{n+k+4}Z^{n-k-2}, Y^{n+k+5}Z^{n-k-3}, \dots, Y^{2n+2}).$$

Then $(X) + I \supseteq J$, because

$$\begin{split} a^{n-k-2-j}b^{j}e_{k+2} &\equiv (-1)^{k+j}Y^{j}Z^{2n-j-1} \bmod (X) \quad \text{for } 0 \leq j \leq n-k-2\,, \\ a^{k-j}b^{n-k+j} &\equiv (-1)^{n-k+j}Y^{n-j+k}Z^{n+k-j} \bmod (X) \quad \text{for } 0 \leq j \leq k\,, \\ b^{n-j-1}e_{j+1} &\equiv (-1)^{n-j-1}Y^{n+j+2}Z^{n-j-1} \bmod (X) \quad \text{for } 0 \leq j \leq k\,, \\ b^{n-k-2-j}e_{k+1}e_{j+1} &\equiv (-1)^{n-k+j}Y^{n+k+4+j}Z^{n-k-2-j} \bmod (X) \\ &\qquad \qquad \text{for } 0 \leq j \leq n-k-2. \end{split}$$

Therefore as $l_A(A/J) = e_{XA}(A/\mathbf{p}^{(n)})$, we get similarly as in the proof of (4.6) that $J = (X) + I = (X) + \mathbf{p}^{(n)}$. Hence $\mathbf{p}^{(n)} = I$.

Proposition (4.9). Suppose that q - kp < (k+1)p - q. Then

$$\mathbf{p}^{(n)} = \mathbf{p}^n + f\mathbf{p}^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j \mathbf{p}^{(n-j)}$$

for $2k + 3 \le n \le 3k + 3$.

Proof. We put
$$I = \mathbf{p}^n + f \mathbf{p}^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j \mathbf{p}^{(n-j)}$$
 and

$$\begin{split} J &= (X) + (Z^{2n-2}, YZ^{2n-3}, \dots, Y^{n-2k-3}Z^{n+2k+1}) \\ &+ (Y^{n-2k-1}Z^{n+2k}, Y^{n-2k}Z^{n+2k-1}, \dots, Y^{n-k-2}Z^{n+k+1}) \\ &+ (Y^{n-k}Z^{n+k}, Y^{n-k+1}Z^{n+k-1}, \dots, Y^nZ^n) \\ &+ (Y^{n+2}Z^{n-1}, Y^{n+3}Z^{n-2}, \dots, Y^{n+k+2}Z^{n-k-1}) \\ &+ (Y^{n+k+4}Z^{n-k-2}, Y^{n+k+5}Z^{n-k-3}, \dots, Y^{n+2k+4}Z^{n-2k-2}) \\ &+ (Y^{n+2k+6}Z^{n-2k-3}, Y^{n+2k+7}Z^{n-2k-4}, \dots, Y^{2n+3}). \end{split}$$

Then $(X) + I \supseteq J$, because

$$\begin{split} &a^{n-2k-3-j}b^{j}f\equiv (-1)^{j+1}Y^{j}Z^{2n-2-j}\ \mathrm{mod}(X)\quad \text{for }0\leq j\leq n-2k-3\,,\\ &a^{k-j-1}b^{n-2k-1+j}f\equiv (-1)^{n+j}Y^{n-2k+1+j}Z^{n+2k-j}\ \mathrm{mod}(X)\quad \text{for }0\leq j\leq k-1\,,\\ &a^{k+j}b^{n-k-j}\equiv (-1)^{n-k-j}Y^{n-k-j}Z^{n+k+j}\ \mathrm{mod}(X)\quad \text{for }0\leq j\leq k\,,\\ &b^{n-1-j}e_{j+1}\equiv (-1)^{n-1-j}Y^{n+2+j}Z^{n-1-j}\ \mathrm{mod}(X)\quad \text{for }0\leq j\leq k\,,\\ &b^{n-k-2-j}e_{k+1}e_{j+1}\equiv (-1)^{n-k-j}Y^{n+k+4+j}Z^{n-k-2-j}\ \mathrm{mod}(X)\quad \text{for }0\leq j\leq k\ \text{and}\\ &b^{n-2k-3-j}(e_{k+1})^{2}e_{j+1}\equiv (-1)^{n-1-j}Y^{n+2k+6+j}Z^{n-2k-3-j}\ \mathrm{mod}(X) \end{split}$$

for
$$0 \le j \le n - 2k - 3$$
.

Hence we have $J = (X) + I = (X) + \mathbf{p}^{(n)}$ for $2k + 3 \le n \le 3k + 3$ by the same reason as in the proof of (4.6). Thus $\mathbf{p}^{(n)} = I$.

Corollary (4.10). $R_s(\mathbf{p})$ is a Gorenstein ring, if q - kp < (k+1)p - q.

Proof. It suffices to see that $A/(e_{k+1}, f) + \mathbf{p}^{(n)}$ is a Cohen-Macaulay ring for each $k+2 \le n \le 3k+2$ (cf. (2.2) and (4.4)); that is enough to check $l_A(A/(X, e_{k+1}, f) + \mathbf{p}^{(n)}) \le e_{XA}(A/(e_{k+1}, f) + \mathbf{p}^{(n)})$. However, because

$$e_{XA}(A/(e_{k+1}, f) + \mathbf{p}^{(n)}) = 4 \cdot l_{A_{\mathbf{p}}}(A_{\mathbf{p}}/(e_{k+1}, f)A_{\mathbf{p}} + \mathbf{p}^{n}A_{\mathbf{p}})$$

by the associative formula of multiplicity (cf. [8]) and because e_{k+1} , f forms a super regular sequence in $A_{\mathbf{p}}$ (cf. [1, (3.1)(3)]), we can easily compute the exact value of $e_{XA}(A/(e_{k+1}, f) + \mathbf{p}^{(n)})$ in terms of n and k, that is

$$e_{XA}(A/(e_{k+1}, f) + \mathbf{p}^{(n)})$$

$$= 2(2n - k)(k+1) \qquad (k+2 \le n \le 2k+2)$$

$$= 2(6kn - 5k^2 - 11k - n^2 + 7n - 6) \qquad (2k+3 \le n \le 3k+2),$$

while we now explicitly have the ideal $(X, e_{k+1}, f) + \mathbf{p}^{(n)}$ by (4.6), (4.8) and (4.9) (cf. their proofs, too). Therefore the required inequality $l_A(A/(X, e_{k+1}, f) + \mathbf{p}^{(n)}) \le e_{XA}(A/(e_{k+1}, f) + \mathbf{p}^{(n)})$ can be directly checked, which we would like to leave to the readers.

Proposition (4.11). Suppose that q - kp > (k + 1)p - q > 0. Then we have

(1)
$$\mathbf{p}^{(2k+3)} = \mathbf{p}^{2k+3} + (f) + \sum_{j=1}^{k+2} e_j \mathbf{p}^{(2k+3-j)}.$$

(2)
$$\mathbf{p}^{(n)} = \mathbf{p}^n + f \mathbf{p}^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j \mathbf{p}^{(n-j)} \quad \text{for } 2k+4 \le n \le 3k+4.$$

Proof. (1) Let
$$I = \mathbf{p}^{2k+3} + (f) + \sum_{j=1}^{k+2} e_j \mathbf{p}^{(2k+3-j)}$$
 and
$$J = (X) + (Z^{4k+5}, YZ^{4k+4}, \dots, Y^{k+1}Z^{3k+4}) + (Y^{k+3}Z^{3k+3}, Y^{k+4}Z^{3k+2}, \dots, Y^{2k+3}Z^{2k+3}) + (Y^{2k+5}Z^{2k+2}, Y^{2k+6}Z^{2k+1}, \dots, Y^{3k+5}Z^{k+2}) + (Y^{3k+7}Z^{k+1}, Y^{3k+8}Z^k, \dots, Y^{4k+8}).$$

Then $(X) + I \supseteq J$, because

$$\begin{split} a^{k+1-j}b^j e_{k+2} &\equiv (-1)^{j+k}Y^j Z^{4k+5-j} \bmod (X) \quad \text{for } 0 \leq j \leq k+1 \,, \\ a^{k-j}b^{k+3+j} &\equiv (-1)^{k+1+j}Y^{k+3+j}Z^{3k+3-j} \bmod (X) \quad \text{for } 0 \leq j \leq k \,, \\ b^{2k+2-j}e_{j+1} &\equiv (-1)^j Y^{2k+5+j}Z^{2k+2-j} \bmod (X) \quad \text{for } 0 \leq j \leq k \,, \\ b^{k+1-j}e_{k+1}e_{j+1} &\equiv (-1)^{k+1-j}Y^{3k+7+j}Z^{k+1-j} \bmod (X) \quad \text{for } 0 \leq j \leq k \end{split}$$

and

$$f \equiv Y^{4k+8} \bmod (X).$$

As $l_A(A/J) = e_{XA}(A/\mathbf{p}^{(2k+3)})$, we get $J = (X) + I = (X) + \mathbf{p}^{(2k+3)}$ whence $\mathbf{p}^{(2k+3)} = I$.

(2) Let
$$I = \mathbf{p}^{n} + f \mathbf{p}^{(n-2k-3)} + \sum_{j=1}^{k+2} e_{j} \mathbf{p}^{(n-j)}$$
 and
$$J = (X) + (Z^{2n-2}, YZ^{2n-3}, \dots, Y^{n-2k-4}Z^{n+2k+2}) + (Y^{n-2k-2}Z^{n+2k+1}, Y^{n-2k-1}Z^{n+2k}, \dots, Y^{n-k-2}Z^{n+k+1}) + (Y^{n-k}Z^{n+k}, Y^{n-k+1}Z^{n+k-1}, \dots, Y^{n}Z^{n}) + (Y^{n+2}Z^{n-1}, Y^{n+3}Z^{n-2}, \dots, Y^{n+k+2}Z^{n-k-1}) + (Y^{n+k+4}Z^{n-k-2}, Y^{n+k+5}Z^{n-k-3}, \dots, Y^{n+2k+5}Z^{n-2k-3}) + (Y^{n+2k+7}Z^{n-2k-4}, Y^{n+2k+8}Z^{n-2k-5}, \dots, Y^{2n+3}).$$

Then $(X) + I \supseteq J$, as

$$\begin{split} a^{n-2k-4-j}b^{j}(e_{k+2})^{2} &\equiv (-1)^{j}Y^{j}Z^{2n-2-j} \bmod (X) \quad \text{for } 0 \leq j \leq n-2k-4\,, \\ a^{k-j}b^{n-2k-2+j}e_{k+2} &\equiv (-1)^{n-k+j}Y^{n-2k-2+j}Z^{n+2k+1-j} \bmod (X) \quad \text{for } 0 \leq j \leq k\,, \\ a^{k-j}b^{n-k+j} &\equiv (-1)^{n-k+j}Y^{n-k+j}Z^{n+k-j} \bmod (X) \quad \text{for } 0 \leq j \leq k\,, \\ b^{n-1-j}e_{j+1} &\equiv (-1)^{n-1-j}Y^{n+2+j}Z^{n-1-j} \bmod (X) \quad \text{for } 0 \leq j \leq k\,, \\ b^{n-k-2-j}e_{k+1}e_{j+1} &\equiv (-1)^{n-k-j}Y^{n+k+4+j}Z^{n-k-2-j} \bmod (X) \quad \text{for } 0 \leq j \leq k\,, \\ b^{n-2k-3}f &\equiv (-1)^{n-1}Y^{n+2k+5}Z^{n-2k-3} \bmod (X) \quad \text{and} \\ b^{n-2k-4-j}fe_{j+1} &\equiv (-1)^{n-j}Y^{n+2k+7+j}Z^{n-2k-4-j} \bmod (X) \\ &\qquad \qquad \text{for } 0 < j < n-2k-4\,. \end{split}$$

 $1 + I - (X) + \mathbf{n}^{(n)}$ whence

Because $l_A(A/J)=e_{XA}(A/\mathbf{p}^{(n)})$, we have $J=(X)+I=(X)+\mathbf{p}^{(n)}$, whence $\mathbf{p}^{(n)}=I$.

Corollary (4.12). $R_s(\mathbf{p})$ is a Gorenstein ring, if q - kp > (k+1)p - q > 0. Proof. By (2.2) and (4.5) we have only to check that $l_A(A/(X, e_{k+2}, f) + \mathbf{p}^{(n)}) \le e_{XA}(A/(e_{k+2}, f) + \mathbf{p}^{(n)})$ for $k+3 \le n \le 3k+3$. Because we explicitly know the ideals $(X, e_{k+2}, f) + \mathbf{p}^{(n)}$ by (4.6), (4.8) and (4.11) and because

$$e_{XA}(A/(e_{k+2}, f) + \mathbf{p}^{(n)})$$

$$= 4kn - 2k^2 + 8n - 6k - 4 \qquad (k+3 \le n \le 2k+3),$$

$$= 12kn - 2n^2 + 18n - 10k^2 - 26k - 16 \qquad (2k+4 < n < 3k+3)$$

we are able to directly check the required inequality. This completes the proof of Theorem (4.1) as well as that of (4.12).

REFERENCES

- S. Goto, K. Nishida, and Y. Shimoda, The Gorensteinness of symbolic Rees algebras for space curves, J. Math. Soc. Japan 43 (1991), 465-481.
- J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193.
- J. Herzog and B. Ulrich, Self-linked curve singularities, Nagoya Math. J. 120 (1990), 129– 153.
- 4. C. Huneke, On the finite generation of symbolic blow-ups, Math. Z. 179 (1982), 465-472.
- 5. ____, The primary components of and integral closures of ideals in 3-dimensional regular local rings, Math. Ann. 275 (1986), 617-635.
- 6. ____, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318.

- 7. M. Morimoto and S. Goto, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves, Proc. Amer. Math. Soc. 116 (1992), 305-311.
- 8. J. P. Serre, *Algèbre locale*: multiplicité (3rd ed.), Lecture Notes in Math., vol. 11, Springer-Verlag, 1975.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, HIGASHIMITA, TAMA-KU, KAWASAKI-SHI, JAPAN

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, CHIBA UNIVERSITY, YAYOI-CHO, CHIBA-SHI, JAPAN

College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara-shi, Japan